

"Schweinefütterung unter Anwendung "heimischer" Eiweißfuttermittel: Ist da der Wurm drin?"

Dr. Reinhard Puntigam

Institut für Tierernährung und Futterwirtschaft, Grub

9. Hohenloher Schweinetagung mit Fachmesse der Tierärzte Team Tiefenbach GmbH und der Tierärzte Hohenlohe Roland-Wurmthaler-Halle in Ilshofen, 28.06.2023

Die Nutztierhaltung und Anforderungen

Die vorrangige Aufgabe der Nutztierhaltung besteht in der Erzeugung tierischer Nahrungsmittel.

Anforderungen

- Selbstversorgungsgrad aufrechterhalten
- Hoch qualitative tierische Lebensmittel
- Tiergesundheit, Wohlergehen und Tierschutz

Ressourcen-, Klima-, und Umweltschutz

- Düngeverordnung
- Stoffstrombilanzverordnung
- NEC-Richtlinie
- Teller vs. Trog Diskussion

zu

Tierische Nst.

Prozess

Die Energie- und Nährstoffangepasste Tierernährung

...Bilanz

SOLL

Der **NährstoffBEDARF** für eine bestimmte Leistungsfähigkeit

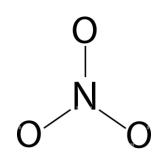
- Umsetzbarer Energie
- Mengen- & Spurenelemente
- Verdauliche Aminosäuren


HABEN

Das **NährstoffLIEFERVERMÖGEN** einer Ration zur Deckung der Leistung

- Umsetzbarer Energie
- Mengen- & Spurenelemente
- Verdauliche Aminosäuren

Stickstoff / Protein / Eiweiß und Aminosäuren


Makronährstoff

- griechisch: proteios "erstrangig, vorrangig"
- Eine Stoffgruppe aus Stickstoff

Proteinogener N 20 Aminosäuren - 8 essentiell

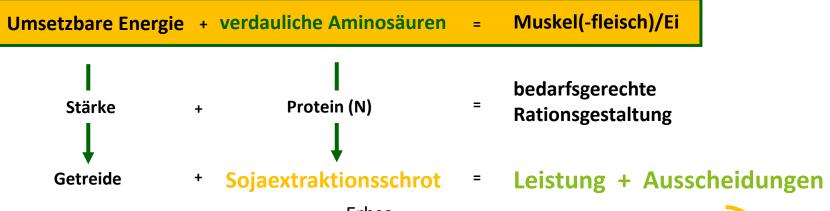
Nicht-proteinogener N Für Monogaster nicht nutzbar z.B. Nitrat

Physiologische Hauptfunktionen

- Antikörper & Immunität
- Körperstruktur "Haut bis Haar"
- Stoffumsatz
- Transport und Signalfunktion
- Reservestoff, ...

Regulation über Absorption und renale Exkretion – Kot und Harn

Uberschuss wird Energie-intensiv ausgeschieden.


"Fütterung" Eine vermeindlich einfache Formel

... je mehr Nährstoffe zu tierischem Produkt transformiert werden, ...desto geringer sind die Ausscheidungen

A feed is only as good as its ingredients

Glencross et al., 2007

Bedarf der Tiere decken = energie- und nährstoffangepasst

Weizen
Mais
Gerste
Körnerhirse
Dinkel
Hafer. ...

Erbse
Ackerbohne
Lupine
Raps
Sonnenblume
Trockenschlempe
Luzerne
Weizenkleie
Larven,
freie Aminosäuren ...

Ausscheidungen (N, P) minimieren

→ Umweltwirkung ↓
Bestmögliche Rückführung aufs Feld

Deklaration

Trockenmasse

Rohprotein Phosphor, ...

Nichts ist so beständig wie der Wandel

... so wie keiner vermutet hat, dass man Fischmehl durch Sojaschrot ersetzen kann,

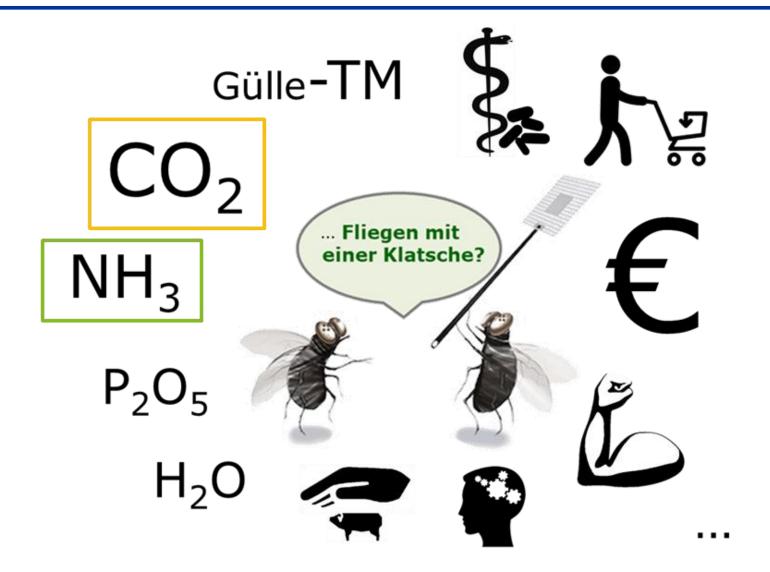
Replacement of fishmeal by soya extraction meal in rapid cereal fattening of pigs.

Foreign Title: Versuche über den Ersatz von Fischmehl durch Soja-Extraktionsschrote bei der Getreideschnellmast von Schweinen.

Author(s): Kirsch, W.; Fender, M.

Author Affiliation: Inst. Tierzucht, Landwirtsch. Hochsch., Hohenheim.

Journal article: Zeitschrift fur Tierphysiologie, Tierernahrung und Futtermittelkunde 1960


Vol.15 pp.257-265

... so ist noch vieles mehr möglich.

→ Kein Wissens – sondern ein Umsetzungsproblem.

Eine klassische win-win-win...Situation

Warum auf den Einsatz von Sojaextraktionsschrot verzichten

- Futterkosten Phasen hoher Sojapreise
- Kritik am Sojaimport, insbesondere aus Südamerika

Die Ernährungs- und Landwirtschaftsorganisation der Vereinten Nationen (FAO) schätzt, dass von 1990 bis 2020 rund **420 Millionen Hektar** Wald abgeholzt wurden

Das Einfuhr- und Verkaufsverbot ist auf Waldflächen beschränkt, die <u>nach</u> dem **31. Dezember 2020** abgeholzt wurden.

...ein erster Schritt... weitere...

Schutz des Regenwaldes
EU verbietet Soja, Palmöl und Rindfleisch aus
Entwaldung

© stock adobe.com/carina furlanetto Rindfleisch, Soja, Holz und Palmöl dürfen künftig nicht mehr i importiert werden, wenn sie auf Flächen erzeugt wurden, die dafür gerodet wurden.

QS: Ab 2024 nur noch nachhaltiges Soja erlaubt

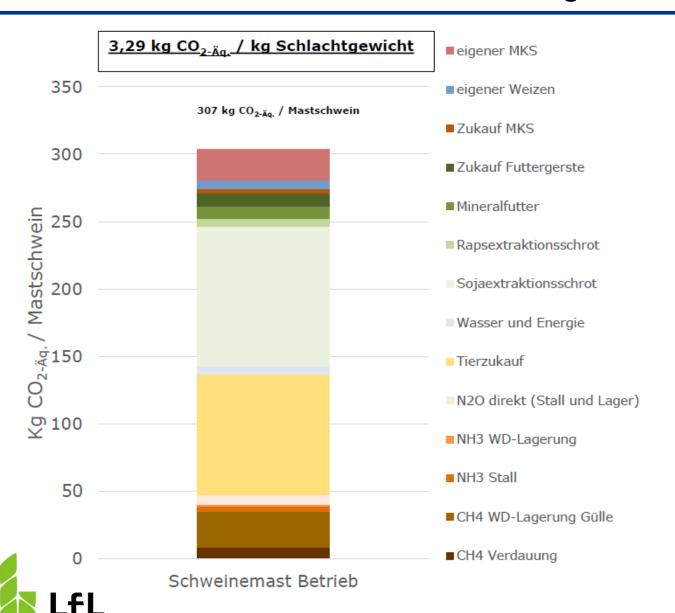
Deutschland. Ab dem 1. Januar 2024 muss Soja im Futter für Rinder, Schweine und Geflügel nachhaltig und entwaldungsfrei erzeugt worden sein. Sofern Tieren im Qualität und Sicherheit GmbH-System (QS-System) Soja verfüttert wird, muss es nach fest definierten Anforderungen als nachhaltig zertifiziert sein.

Bereits ab 1. April 2023 können Futtermittelhersteller den QS-Anforderungskatalog freiwillig umsetzen. Das haben die Fachbeiräte Rind und Schwein sowie Geflügel im Januar 2023 beschlossen. Laut Dr. Alexander Hinrichs, Geschäftsführer der QS, könnten sich alle künftig darauf verlassen, dass Soja im QS-Tierfutter ausschließlich nachhaltig erzeugt wurde und damit auch aus entwaldungsfreier Produktion stammte.

Warum auf den Einsatz von Sojaextraktionsschrot verzichten

... weitere Kritikpunkte:

- Verlust Ökosystemdienstleistungen
- Einsatz von gefährlichen, in D bzw. EU nicht (mehr) zugelassenen PSM (Wasserverschmutzung[↑], Artenvielfalt↓)
- Fehlendes Bodenmanagement (Bodenerosion ↑,
 Bodenfruchtbarkeit ↓, Nährstoffverluste ↑)
- Soziale Auswirkungen (Vertreibung der ländlichen Bevölkerung, illegale Landnutzung, Landkonflikte, Arbeitsbedingungen ↓, Arbeitsrechte ↓)
- Nahrungskonkurrenz (hef = human edible fraction)
- CO₂- Fußabdruck der tierischen Produktion


20.10.2022

MÜLLER GRUPPE WILL CO2-NEU-TRALE SCHWEINEFLEISCHPRODUK-TION BIS 2030

Birkenfeld / Ulm - Die Müller Gruppe will gemeinsam mit allen Partnern der Wertschöpfungskette und der Politik eine nachhaltige Schweinefleischproduktion in Süddeutschland bis 2030 umsetzen. Diese Initiative für Bayern und Baden-Württemberg unterstrich die Geschäftsleitung auf der Fachtagung "Der Weg zu einer nachhaltigen, wirtschaftlichen Schweinefleischproduktion in Süddeutschland!" in Ulm, Seligweiler. Im Beisein der bayerischen Staatsministerin Michaela Kaniber und Peter Hauk,…

THG-Bewertung Modellbetrieb, LfL

	Emissionsfaktoren Futtermittel (kg CO _{2-Äq.} / kg TF 88%)
Eigene Futtergerste (24% Anteil)	0,33
Zukauf Futtergerste (76% Anteil)	0,27
Eigene MKS (88% Anteil) Zukauf MKS (12% Anteil)	0,21 0,24
Eigener Futterweizen	0,25
Rapsextraktionsschrot	0,47
Sojaextraktionsschrot	3,124
Mineralfutter	1,248
Emission of alchoron (7.1/2.1ff)	the weither Name Candonius

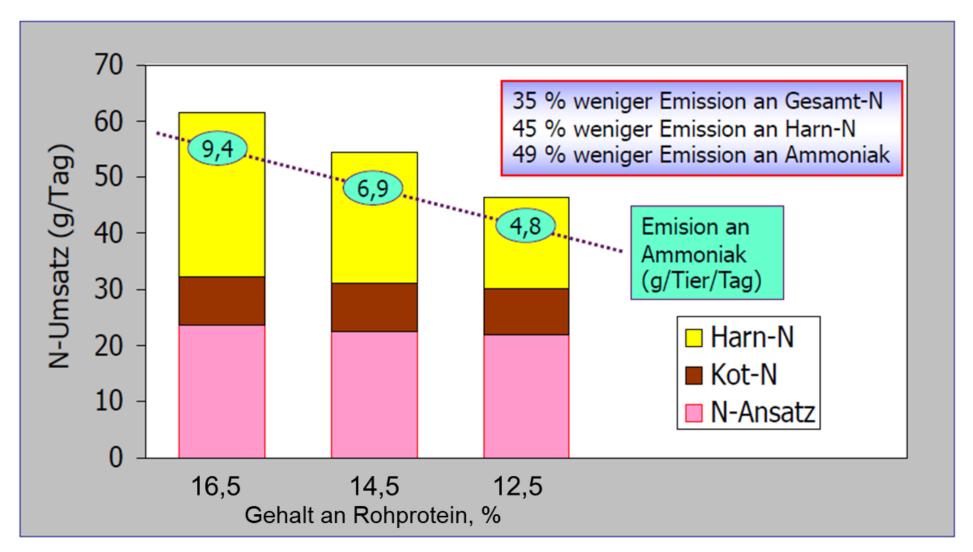
Emissionsfaktoren (Zukauffuttermittel) aus Feedprint Database bzw. LfL-Datenbank

Tagesaktuell

Niederlande

CO2 neutrales Schweinefleisch erstmals auf dem Markt

Climate Neutral Certified



Proteinreduzierte Rationen – Bsp. Schweinemast

	Ro	hproteingehalt, in	%	
	16,5	14,5	12,5	
Rationskomponenten (%)				
Gerste	37,5	37,5	37,5	
Weizen	37,5	37,5	37,5	
Sojaöl	1,00	0,70	0,40	
Sojaextraktionsschrot	16,3	11,2	6,10	
L-Lysin DL-Met	0,11	0,28 0,06	0,45 0,12	
L-Thr L-Trp	0,03	0,11 0,03	0,19 0,05	
Anfangsgewicht, kg Endgewicht, kg Tageszunahmen, g/d Futteraufnahme, kg/d	54,8 105,6 793 2,4	54,9 107,3 819 2,3	54,8 105,7 795 2,3	

Auswirkungen auf die N-Emissionen

Die bedeutendsten Meilensteine in der Tierernährung der vergangenen 100 Jahre

ASAS Centennial Paper: Landmark discoveries in swine nutrition in the past century^{1,2}

... wer reduziert muss auch präzisieren...

G. L. Cromwell³

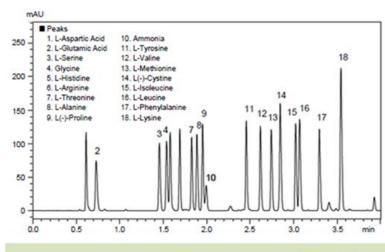
Table 2. Survey results—top 20 research areas as ranked by the total score of the survey responders

Rank	Discovery area	$Score^1$	$\%^2$
1	Amino acids—discovery, synthesis, requirements	673	87
2	Nutrient requirements—establishment, refinement	532	68
3	Vitamins—discovery, synthesis, requirements	381	67
4	Minerals—discovery, role, requirements	347	56
5	Antibiotics—discovery of growth enhancement	231	64
6	Nursery diets for early weaned pigs, whey, lactose, plasma	219	55
7	Nutrient bioavailability—P, trace elements	187	46
8	Ideal protein concept	180	46
9	Phytase	158	50
10	Soybean meal and the corn-soybean meal diet	137	38
11	Crystalline AA synthesis	136	38
12	Discovery and synthesis of vitamin B_{12}	128	27
13	Metabolic modifiers—ractopamine	99	36
14	Ileal digestibility of AA	88	24
15	National Research Council requirements, development of models	81	18
16	Sow diets—gestation and lactation	80	27
17	Phase feeding and split-sex feeding	78	26
18	Selenium requirements, interrelationship with vitamin E	76	21
19	Copper sulfate and zinc oxide as growth stimulants	73	24
20	Development of energy systems	69	18

¹The first choice by a responder to the survey was given a 10, a second choice was given a 9, a third choice was given an 8, and so on.

²Percentage of the 66 responders to the survey who listed this discovery area in their top 10.

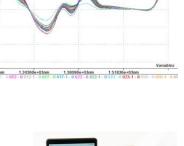
Ohne Messen kein Steuern


nasschemisch "old school"

The development and availability of ion exchange chromatography for AA analysis was a major step forward in improving estimates of requirements and composition of feeds in the area of AA nutrition.

Nahinfrarotspektroskopie

Near-infrared spectroscopy and other sophisticated lab analysis have played major roles in increasing the knowledge base in animal nutrition.



Cromwell, 2009

Untersuchungsergebnisse Ernte 2022

Futtermittel	Proben	ME Schwein	Rohfaser	Rohprotein	Lysin	Р
(88%TM)	N ¹⁾	(MJ)	(g)	(g)	(g)	(g)
SES LP	E1/42/10	12,80	80	424	26,1	6,6
(min-max)	51/43/18	(12,4-13,2)	(43-132)	(364-466)	(22,7-28,3)	(5,5-8,2)
SES HP	22/10/2	13,70	54	454	27,9	7,0
(min-max)	23/18/2	(13,0-14,0)	(25-122)	(389-474)	(24,1-29)	
Rapsextraktionsschrot	35/9/23	10,0	128	326	18,8	11,3
(min-max)		(9,9-10,2)	(88-142)	(281-368)	(17,6-20,9)	(9,1-14)

Futtermittel	Proben	ME Schwein	Rohfaser	Rohprotein	Lysin	P
(88%TM)	N ¹⁾⁾	(MJ)	(g)	(g)	(g)	(g)
Gerste (min-max)	544/477/100	12,6	44	95	3,6	3,6
	, , ,	(12,3-12,8)	(34-65)	(68-142)	(2,9-4,8)	(2,8-4,6)
Weizen (min-max)	481/380/81	13,7	26	115	3,1	3,5
,	, ,	(13,6-13,8)	(19-32)	(80-159)	(2,7-3,9)	(2,5-4,5)

Wie wollen Sie denn den Gehalt an Rohprotein reduzieren, wenn Sie den Gehalt nicht kennen? Wie wollen Sie denn den freie Aminosäuren gezielt supplementieren, wenn Sie den Gehalt nicht kennen?

Auswirkung des Nährstoffgehaltes von Sojaextraktionsschrot

"Sojaqualitäten"

	MIN.	REFERENZ	MAX.
Energie, MJ ME	12,40	12,80	13,20
Rohfaser, g	132	80	43
Rohprotein, g	364	424	466
Lysin, g	22,7	26,1	28,3
Phosphor, g	5,5	6,6	8,2

Rationszusammensetzung (in der FM)

	Anfangsmast	Mittelmast	Endmast
	(30 - 60 kg LM)	(60 - 90 kg LM)	(90 - 120 kg LM)
Weizen	49	52	58
Gerste	27	32	33
Sojaöl	2	1	0
Sojaextraktionsschrot	19	12	6
Mineralfutter, 12/1	3	3	3

Nährstoffgehalte mittleres Mastfutter - unterschiedlichen "Qualitäten des Sojaextraktionsschrotes (je kg bei 88 % TM)

	Energie	Rohfaser	Rohprotein	Lysin	Lysin/MJ ME	Phosphor
	MJ ME	g/kg	g/kg	g/kg	1:	g/kg
364 g XP - MIN.	13,05	43	137	9,04	0,69	3,6
424 g XP - REFERENZ	13,08	37	144	9,43	0,72	3,7
466 g XP - MAX.	13,14	33	149	9,69	0,73	3,9

→ Zusätzlich mit MIN und MAX Werte der Getreide

Die Proteinreduktion - light

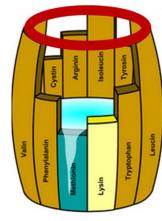
Proteinreduktion in der Vormast

Gruppe 1	Gruppe 2	Gruppe 3
17,8	15,3	15,3+Lysin
22	22	22
700 ^a	649 ^b	699 ^a
338 ^a	294 ^b	337 ^a
118°	132 ^a	124 ^b
	17,8 22 700 ^a 338 ^a	17,8 15,3 22 22 700 ^a 649 ^b 338 ^a 294 ^b

Leistungseinbruch und stark erhöhter Fettansatz

Mastschweineversuch ab 70 kg - Versuchsrationen

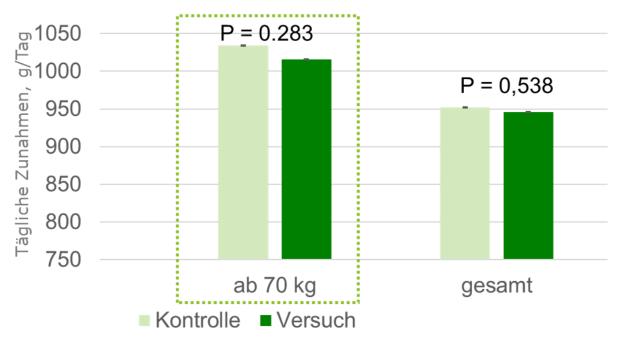
	Kontrolle	Versuch	Ab kg L	M Futter, kg
Gerste	30,00	31,60	28	24,3
Weizen	18,20	20,00	40	59,9
Roggen	24,00	24,00	65	69,7
Körnermais	7,00	7,00	90	97,5
Sojaschrot	7,90	2,10		
Rapsextraktionsschrot	2,00	-		ca. 40 % in der EM
Weizenkleie	3,00	6,00		ca. 66 % ab 70 kg
Sojaschalen	2,30	2,65	Kosten der	
Haferschälkleie	2,00	2,10	Rationskompone	enten
Sojaöl	0,85	1,00		


Mastschweinerationen ab 70 kg

Versuchsrationen (Deklaration)

				Praecaecal verdauliches						
	ME	XP	Lys	Met+Cys	Thr	Trp	Val	Leu	Iso	His
	(MJ/kg)	(g/kg)				(g/kg)				
Kontrolle	13,0	135	7,6	4,94	4,95	1,41	4,95	7,75	4,10	2,70
Versuch	13,0	115	7,6	4,94	4,95	1,41	4,94	7,60	4,00	2,50

	Р	vΡ	Ca		
		(g/kg)			
Kontrolle	3,4	2,2	4,5		
Versuch	3,3	2,2	4,5		


Freie Aminosäuren in den Rationen Lys, Met, Thr, Trp, Val, Leu, Iso, His

Ergebnisse Lebendmasse

	Kontrolle	Versuch	SEM	P-Wert Futter
Lebendmasse				
Start Versuchsfütterung, kg	72,5	72,8	0,95	0,727
Ausstallung, kg	124,3	123,5	0,37	0,108

Futteraufwand und **Schlachtdaten** ebenso kein Unterschied zwischen Kontroll- und Versuchsration.

Ergebnisse Schlachtdaten

		Kontrolle	Versuch	SEM	P-Wert Futter
Schlachtgewicht	(kg)	98,2	98,5	0,27	0,429
Ausschlachtung	(%)	79,3	79,5	0,18	0,216
Bauchfleischanteil*	(%)	60,75	60,36	0,34	0,356
Schinken*	(kg)	20,1	20,0	0,13	0,301
Lachs*	(kg)	8,1	8,1	0,05	0,629
Fleischmaß*	(mm)	73,6	72,6	0,66	0,122
Fettmaß*	(mm)	13,3	13,3	0,16	0,972

^{*} Mittels Auto FOM bestimmt

N- und P-Ausscheidungen in Abhängigkeit von der Fütterung

		Kontrolle	Versuch
Gewogenes Mittel			
XP	(g/kg)	146,5	134,5
Р	(g/kg)	3,87	-13% 3,78
N-Ausscheidung	kg/MS	3,30 -	2,87
P-Ausscheidung	kg/MS	0,458	0,447

Rationsgestaltung unter Einsatz freier Aminosäuren

Darstellung einer mittleren Schweinemastration

	Ohne freie AS, %	Mit freien AS, %
Weizen	58	51,0
Gerste	28	30,87
Soja 44 %	11	8
Mineralfutter (10 % Lysin)	3,0	3,0
Lysin		0,08
Methionin		0,02
Threonin		0,03
Summe	100	100
Energie, MJ ME	12,97	12,96
Rohprotein, g/kg	154	145
Lysin, g/kg	9,00	8,93
Lysin/MJ ME: 1:	0,69	0,69
Phosphor, g/kg	3,9	3,8

→ 3. ernährungsphysiologische Zusatzstoffe

Vitamine, Spurenelemente, **Aminosäuren**

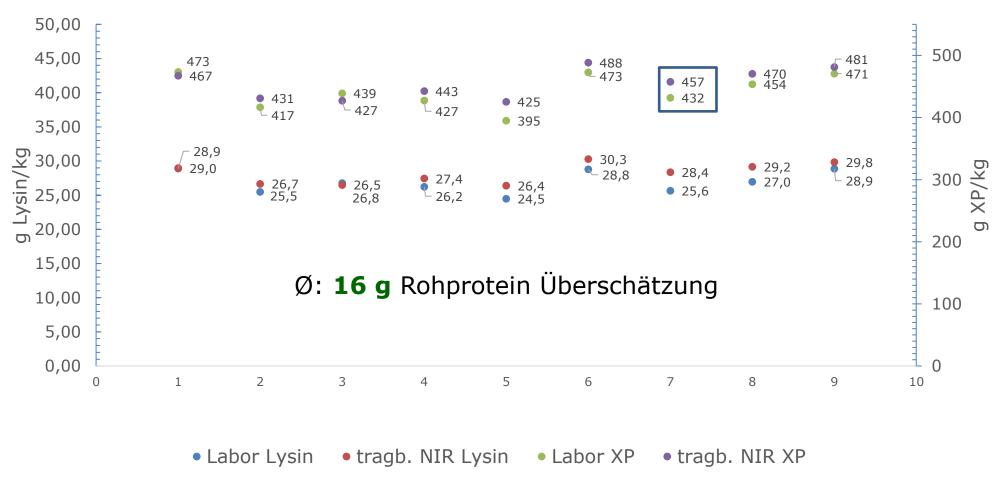
→Registrierung bei

Futtermittelüberwachung notwendig

→ Einhaltung Anhang II der Futtermittelhygieneverordnung,

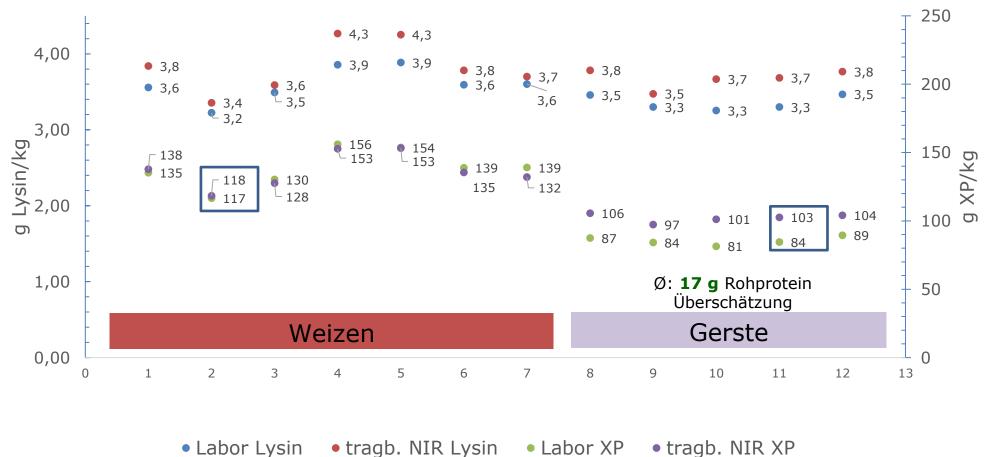
Angaben zur Rückverfolgbarkeit

Die Dokumentation muss bei jeder Änderung der Ration bzw. Mischanweisung erfolgen, mindestens jedoch monatlich. Die Dokumentation


etrieb		,		-	Blatt-Nr.:	
Datum	Aminosäure	Menge (g oder kg)	Mischung zugesetzte Menge n g/kg (oder kg/t) Gesamtmischung	Anwender (Name)	Bemerkungen (Kontrollen, Hinweis auf Rationsberechnungen, Mischanweisungen etc.)	(Unterschrift, Datum)
	3					

Angabe im g/kg TF 88%

Stationäres vs. portables NIRS


Sojaextraktionsschrot Lysingehalt und XP (Rohproteingehalt) 88% TM

Stationäres vs. portables NIRS

Weizen/Gerste Lysingehalt / XP (Rohproteingehalt) 88% TM

Nährstoffdichte einer Rationen im Vergleich – NIRS: portabel vs. stationär

Labor-NIRS - stationär

•	Anfangsmast	Endmast				
	Anteil FM %					
Weizen	44,5	37,5				
Gerste	35,5	50,0				
Sojaextraktionsschrot, Ip	17,0	9,5				
Mineral: 12-2,4-4-0,2	3	3				
Umsb, Energie, MJ ME	12,83	12,72				
Rohprotein, g/kg	160	131				
Lysin, g/kg	10,52	8,86				
dvd Lysin, g/kg	9,12	7,61				

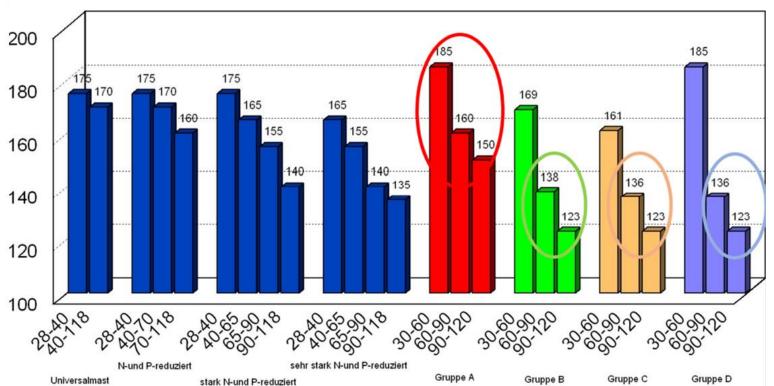
Abschnitt, kg	Rohprotein g/kg TF	Lysin g/kg TF	dvd Lysin g/kgTF	Phosphor g/kg TF
30.0 - 60.5	160	10,52	9,12	4,4
60.5 - 90.4	143	9,53	8,21	4,3
90.4 - 118.4	131	8,86	7,61	4,2
Mittel	143	9,55	8,23	4,3

port-NIRS - portabel

	Anfangsmast	Endmast
	Anteil	FM %
Weizen	46	36
Gerste	37	54
Sojaextraktionsschrot, lp	14	7
Mineral: 12-2,4-4-0,2	3	3
Umsb, Energie, MJ ME	12,85	12,71
Rohprotein, g/kg	161	135
Lysin, g/kg	10,48	8,79
dvd Lysin, g/kg	9,02	7,46

A	Rohprotein	,	dvd Lysin	Phosphor	
Abschnitt, kg	g/kg TF	g/kg TF	g/kgTF	g/kg TF	
30.0 - 60.5	161	10,48	9,02	4,3	
60.5 - 90.4	145	9,47	8,08	4,2	
90.4 - 118.4	135	8,79	7,46	4,1	
Mittel	145	9,49	8,10	4,2	

... wenn "auf Kante genäht" → Leistungsminderungen



Ein Schweinemastversuch aus Iden

Landesanstalt für Landwirtschaft und Gartenbau

Versuchseinrichtungen der Landesanstalt für Landwirtschaft und Gartenbau in Sachsen-Anhalt, Iden

- 192 Aufzuchtferkel (32,58 \pm 0,33 kg LM), Pi x (DL x DE)
- Kastraten und weibliche Tiere, Rasse

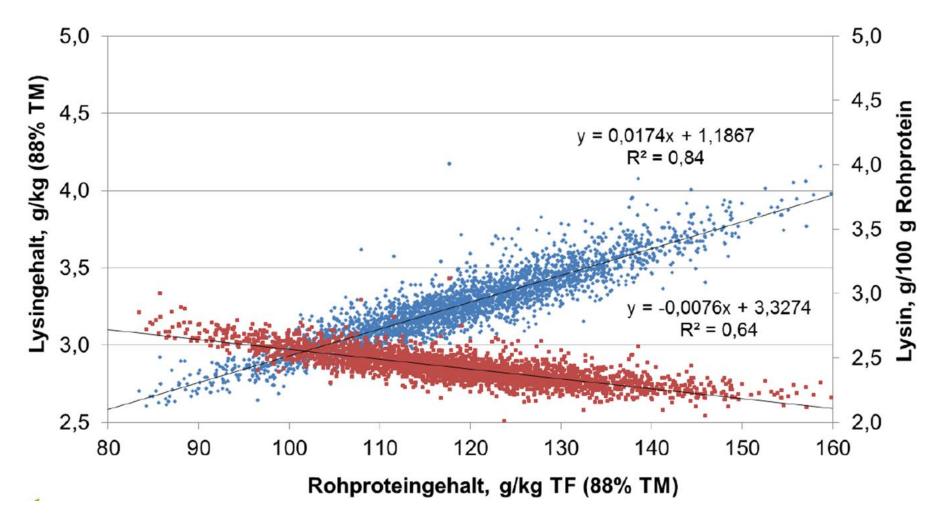
Darstellung der Versuchsgruppen

	Anfangsmast (25-60 kg LM)			Mittelmast (60-90 kg LM)			Endmast (90-120 kg LM)					
Gruppen	Α	В	С	D	Α	В	С	D	Α	В	С	D
SES-hp, %	15,8	0	6,5	15,8	4,8	0	2,8	2,8	2,0	0	0	0
RES, %	5,5	12,0	7,5	5,5	10	6,3	1,3	1,3	10	0	0	0
Ackerb., %	0	14,25	0	0	0	0	0	0	0	0	0	0
*Getreide, %	74	67	81	74	83	91	93	93	86	97	97	97
Rohprotein, g	179	168	160	181	153	143	130	128	148	123	121	122
Lysin, g	10,8	10,8	10,5	10,6	9,1	9,1	8,5	8,7	7,4	7,3	7,3	7,1

16,0 Verbrauch Sojaextraktionsschrot, kg/MS 13,0 6,4 Α В D

Biolys®, MetAMINO®, ThreAMINO®, TrypAMINO®, ValAMINO®, L-Isoleucine

	Sojaext-schrot-HP	Rapsext-schrot	Ackerbohne	Gerste	Weizen	Tritikale	Mais
Trockenmasse, g	873	878	890	886	887	868	875
Rohprotein, g	466	354	279	129	131	116	75
Lysine, g	28,6	18,7	17,1	4,4	3,6	3,8	2,4
verdl. Lysin, g	25,8	13,6	14,2	3,3	3,0	3,2	1,8
Phosphor, g	59	98	51	30	27	27	22
Energie, MJ ME	13,7	10,9	13,2	12,9	14,2	13,5	14,2



*Getreide inkludiert Körnermais; Quelle: Weber, 2021

Muss es der Weizen mit dem höchsten Gehalt an Rohprotein sein?

Gehalt an Lysin pro kg bzw. pro 100g Rohprotein in Weizen

Versuchsfuttermischungen - analysiert

Landesanstalt für Landwirtschaft und Gartenbau

Gehalte an Nährstoffen der analysierten Versuchsfuttermischungen

	Anfangsmast (30-60 kg)				Mittelmast (60-90 kg)				Endmast (90-120 kg)			
Nährstoff	Α	В	С	D	Α	В	С	D	Α	В	С	D
Energie, MJ ME	14,0	13,8	14,1	14,1	13,2	13,4	13,2	13,2	13,5	13,4	13,3	13,2
Rohprotein, g	179	168	160	181	153	143	130	128	148	123	121	122
Lysin, g	10,8	10,8	10,5	10,6	9,1	9,1	8,5	8,7	7,4	7,3	7,3	7,1
Methionin, g	3,3	3,3	3,2	3,1	2,8	2,7	2,5	2,5	2,3	2,3	2,2	2,2
Threonin, g	7,5	7,2	6,9	7,1	6,0	5,8	5,3	5,2	4,9	4,7	4,7	4,7
Cystin, g	3,3	3,1	3,1	3,2	3,1	2,7	2,5	2,5	2,8	2,0	2,0	2,0
Phosphor, g	4,8	4,9	4,7	4,7	3,5	3,6	2,7	2,7	3,4	2,7	2,7	2,7

Sehr gute Übereinstimmung zwischen kalkuliert und analysiert Substitution von Sojaextraktionsschrot durch Rapsextraktionsschrot und Ackerbohne – kein analytischer Unterschied.

Ergebnisse aus der Mast- und Schlachtleistung

Landesanstalt für Landwirtschaft und Gartenbau

Kein statistisch nachweisbarer Unterschied bei den Mast- und Schlachtleistungen

	Α	В	C	D
Mastleistung				
Einstallgewicht, kg	32,8	32,7	32,1	32,7
Ausstallgewicht, kg	120,6	120,8	120,2	120,6
Zunahmen Gesamt, g/T	942	916	915	943
Futterverbrauch Gesamt, kg/T	2,39	2,40	2,40	2,46
Futteraufwand Gesamt, kg/kg	2,55	2,62	2,62	2,62
Schlachtleistung				
Schlachtgewicht, kg	96,8	96,5	96,4	97,3
Ausschlachtung, %	80,2	79,9	80,2	80,6
MFA(FOM), %	60,6	59,1	59,7	60,2

Deutliche Reduktion der N und P Ausscheidungen

Gruppe	Α	В	С	D	DLG* Stark N-P reduziert	DLG* Sehr stark N-P reduziert	
Stickstoffausscheidung (g / Schwein)							
	3.550	3.020	2.770	2.980	3.870	3.490	

Rapsextraktionsschrot und Erbsen in Aufzucht und Mast von Schweinen

	Kontrolle	Versuch	Kontrolle	Versuch
	FAF 1	FAF 1	FAF 2	FAF 2
Weizen, %	35,5	53,5	37	51,5
Gerste, %	40	20	40	20,5
SES, %	18,5	15,5	17,5	12,5
RES, %	-	5	-	10
Mineralfutter, %	4	4	3,5	3,5
Sojaöl, %	1	1	1	1
Futtersäure, %	1	1	1	1
Energie, MJ ME	13,8	13,6	13,7	13,6
Rohfaser, g	27	33	31	39
Rohprotein, g	172	174	168	167
Lysin, g	11,2	11,5	11,1	11
Phosphor, g	4,1	4,6	4,1	4,7

	Kontrolle	Versuch	Kontrolle	Versuch	Kontrolle	Versuch
	AM	AM	MM	MM	EM	EM
Weizen, %	42	57	44,5	58	42	50
Gerste, %	40	10	40	10	45	20
SES, %	15	5	13	0	11	0
RES, %	0	10	0	9	0	8
Erbsen, %	0	15	0	20	0	20
Mineralfutter, %	3	3	2,5	3	2	2
ums. Energie, MJ ME	13,3	13,1	13,5	13,1	13	12,9
Rohfaser, g	34	40	32	40	37	44
Rohprotein, g	172	166	167	157	151	153
Lysin, g	12,2	11,2	8,3	8,1	8,1	8,8
Phosphor, g	3,7	4,0	3,8	4,4	4,3	4,7

Mineralfutter FAF 2: Reduktion im P- und Meth-Gehalt

Mineralfutter: 10% Lysin, 2% Methionin, 3% Threonin

Kein Unterschied in den Leistungen zwischen Kontrollund Versuchsgruppe

N-/P-Reduktion in der Zuchtsauenfütterung unter Einsatz von RES

Sehr stark stickstoff- und phosphorreduzierte Fütterung von Zuchtsauen

(Schweinefütterungsversuch S 136)

Dr. W. Preißinger, S. Scherb, G. Propstmeier

- → Oktober 2018 bis Dezember 2020
- Gruppe A: Einsatz von handelsüblichen Mineralfuttermitteln und Fasermixen.
- Gruppe B: Sehr stark stickstoff- und phosphorreduziert nach DLG-Vorgabe;
 Mineralfutter mit erhöhten Aminosäure- und verminderten Phosphorgehalten,
 Fasermix mit niedrigerem Weizenkleieanteil.

Sehr stark N-/P-reduzierte Zuchtsauenfütterung

Rationszusammensetzung und analysierte Nährstoffgehalte (Angaben bei 88 % TM)

		Tragefutter		L	_aktationsfutte	ter
		Soja	Raps	Soja	Raps	Raps+
Getreide	%	72,5	68,5	54,5	49	46
Fasermix	%	20	20	5	5	5
Mais, Körner	%			20	20	20
Sojaextrschrot 48	%	4	0	16	10,5	7,5
Rapsextrschrot	%		8	0	10	15
Öl	%	1	1	1	2	3
Mineralfutter	%	2,5	2,5	3,5	3,5	3,5
ME	MJ	11,8	11,7	13,6	13,7	13,4
Rohprotein	g	124	131	176	172	173
Lysin	g	5,8	6,8	9,2	9,3	9,4
M+C	g	4,0	4,9	5,8	6,4	6,5
Threonin	g	4,1	4,7	6,3	6,7	6,9
Tryptophan	g	1,6	1,7	2,1	2,2	2,2

Zuchtleistungen der Sauen

... kein Effekt auf Futteraufnahme und Gewichtsentwicklung der Sauen

		Konventionell	Sehr stark N-/P-reduziert	p ¹⁾	
ausgewertete Würfe	n	201	205		
Säugedauer	Tage	27,6	27,6	0,828	
lebend geborene Ferkel	n	13,6	13,9	0,247	
tot geborene Ferkel	n	1,3	1,4	0,678	
Ferkelgewicht (Geburt)	kg	1,53 ^b	1,59a	0,011	7
abgesetzte Ferkel	n	$12,0^{b}$	12,4ª	< 0,001	`
Ferkelgewicht (Absetzen)	kg	7,8	7,8	0,74	٦
Wurfzuwachs/Tag	kg	2,87	2,94	0,164	

¹⁾ Irrtumswahrscheinlichkeit; Werte mit unterschiedlichen Hochbuchstaben unterscheiden sich signifikant (p<0,05)

Geburtsverhalten, Medikation und Anomalien bei Ferkeln

		Konventionell	Sehr stark N-/P-reduziert	p ¹⁾	
Wurfziffer	n	4,4ª	4,9 ^b	0,018	

Einsatz von Trockenschlempe (DDGS) in der Schweinemast

Sojaschrot (hp) → ca. **4,5-fache** an verd. Lysin im Vergleich zur Trockenschlempe

	Anfangsmast		Endmast	
	30-7!	30-75 kg		5 kg)
	Kontrolle	DDGS	Kontrolle	DDGS
Sojaextraktionsschrot, hp, %	10		7	
Trockenschlempe, DDGS, %		28		18
Rapsextraktionsschrot, %	3		1	
Umsetzbare Energie, MJ ME, kg	13,4	13,5	13,4	13,5
Rohprotein, g/kg	150	168	129	149
Lysin, g/kg	10,6	10,9	8,8	9,6
Kalk. dvd. Lysin, g/kg	9,4	9,7	7,7	8,5

DDGS

Rohprotein: 322 g/kg

Lysin: 7,0 g/kg

Lys/100 g RP: 2,2 g/kg

Methionin: 5,0 g/kg Met+Cys: 9,5 g/kg

Threonin: 10,3 g/kg

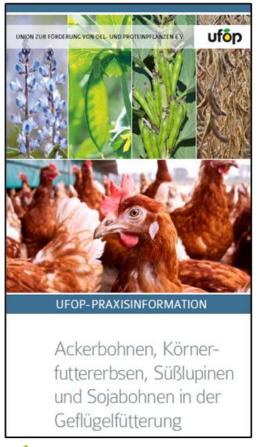
Tryptophan: 3,1 g/kg

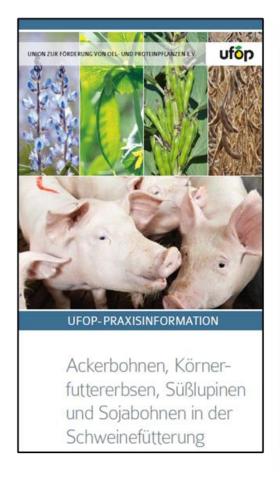
Sojaextraktionsschrot hp

→ 6,12 g Lysin / 100 g RP

Mast – und Schlachtleistung unbeeinflusst

Zielkonflikt: Hoher N-Gehalt der Rationen - rechtlich


Die bedeutsamsten Eiweißfuttermittel



Informationen zur Tierernährung im ökologischen Landbau

... eine praxisrelevante Auswahl.

Daten aus Bayern – heimische Leguminosen

Inhaltsstoffe in g/kg TM	Ackerbohne	Erbse	Lupinen	Sojakuchen
Rohprotein	267,70 ±17,6	206,34 ±15,46	308.28 ± 44.43	383,17 ±31,66
Rohfett	10,62 ±2,79	12,07 ±4,55	85.60 ± 19.28	143,37 ±46,54
Energie Schwein (ME)	12,38 ±0,16	13,34 ±0,10	13.99 ± 0.32	15,07 ±0,89
Kalzium	1,50 ±0,28	1,26 ±0,46	2.45 ± 0.33	2,53 ±0,38
Phosphor	5,09 ±0,85	4,64 ±0,69	5.28 ± 0.75	6,56 ±0,64
Lysin	16,74 ±0,99	14,93 ±0,71	15.48 ± 1.59	23,68 ±1,62
Methionin	1,89 ±0,29	1,90 ±0,08	2.05 ± 0.21	5,15 ±0,36
Threonin	9,14 ±0,63	7,62 ±0,32	11.62 ± 1.28	14,59 ±1,08
Thryptophan	2,08 ±0,36	1,88 ±0,11	2.45 ± 0.24	5,08 ±0,43
Lysin/100 g XP	6,31 ±0,29	7,36 ±0,22	4.77 ± 0.36	6,25 ±0,19

Mastschweinefütterung zwei- und vierphasigen Ökofütterung

Planungsdaten der beiden Öko-Futtergruppen – Kein Einsatz von freien Aminosäuren

			llgruppe iges Futter	Versuchsgruppe Vierphasiges Futter				
Mastabschnitt	kg	VM Mast 28-70 70-122		VM 28-60	MM 60-80	Mast 80-100	EM 100-122	
Rohprotein	%	17,0	15,5	17,0	17,0	15,5	14,0	
Lysin	%	1,00	0,85	1,00	0,95	0,85	0,75	
Rohfaser	%	4,6	4,8	4,6	4,8	4,8	6,0	
ME	MJ/kg	13,0	12,7	13,0	12,9	12,7	12,2	
Phosphor	%	0,53	0,48	0,53 0,48 0,48			0,42	

Analysiert

		VM	MM	Mast	EM
Rohprotein	%	16,1	15,3	16,2	15,0
Lysin	%	0,96	0,89	0,91	0,83
Met+Cys	%	0,53	0,53	0,50	0,49
Threonin	0/0	0,65	0,61	0,61	0,57
Valin	%	0,81	0,78	0,79	0,70
Rohfaser	0/0	5,0	3,7	4,9	4,5
Phosphor	0/0	0,54	0,51	0,48	0,47
ME	MJ/kg	12,9	13,2	12,6	12,8
Lysin/ME	g/MJ	0,74	0,67	0,72	0,65

Rationszusammensetzung

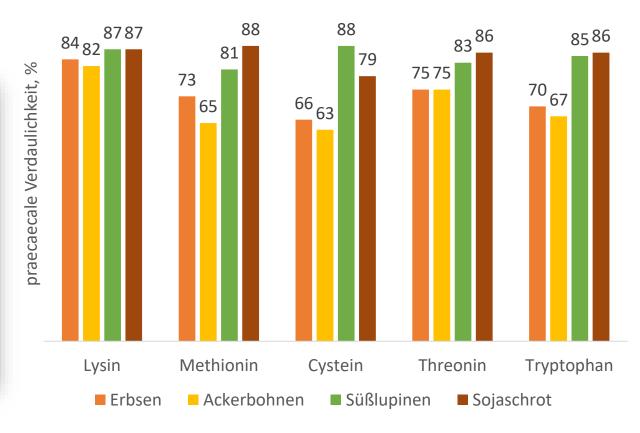
	VM	MM	Mast	EM
A-Öko-Gerste	X	X	X	X
A-Öko-Triticale	X	X	X	X
U-Gerste	X	X	X	X
A-Öko-Weizen	X	X		X
U-Mais	X			
A-Öko-Sojabohnen getoastet	X	X	X	X
A-Öko-Ackerbohnen	X	X	X	X
U-Ackerbohnen	X		X	
A-Öko-Erbsen		X	X	X
U-Erbsen		X		X
Kartoffeleiweiß	X	X		X
A-Öko-Sonnenblumenkuchen	X			
A-Öko-Sojakuchen getoastet	X	X	X	X
Maiskleber			X	
A-Öko-Luzernegrünmehl			X	X

Die Kombination machts möglich

Leistungen der Mastschweine

		Kontrollgruppe Zweiphasiges Futter	Versuchsgruppe Vierphasiges Futter
Anzahl Tiere		56	55
Anfangsgewicht	kg	26,1	26,3
Endgewicht	kg	124,0	123,6
Tageszunahmen	g	1085	1095
Futteraufwand/kg Zuwachs	kg	2,49	2,50
Futterverbrauch/Tag	kg	2,69	2,74
Schlachtkörpergewicht	kg	94,5	94,1
Schlachtausbeute	%	76,1	76,2
Schinken	$_{ m kg}$	18,6	18,4
Lachs	kg	7,3	7,2
Schulter	kg	9,1	9,1
Bauch	kg	13,4	13,5
MFA Bauch	%	$60,0^{a}$	59,0 ^b
Speckmaß	mm	12,9ª	13,5 ^b
Fleischmaß	mm	65,8	65,2
Indexpunkte/kg SG	_	1,015	1,006

a,b: Unterschiedliche Buchstaben kennzeichnen signifikante Differenzen (p<0,05).



Entscheidend ist, was im Tier "ankommt"

Freie Aminosäuren – eine Errungenschaft der Tierernährung

Ein **Risiko** welches durch **Messbarkeit** kalkulierbar gemacht werden kann stellt auf Grund der **Steuerbarkeit** <u>kein Risiko</u> dar.

→ was ich einschätzen kann, kann ich auch berücksichtigen.

Ferkelversuch aus Bayern

Inhaltsstoffe eingesetzter heimischer Körnerleguminosen (880 g TM)

,		Erbsen	Ackerbohnen	Lupinen
Trockenmasse	g	886	888	851
Rohnährstoffe				
Rohasche	g	31	30	30
Rohprotein	g	202	225	323
Rohfaser	g	68	96	123
Rohfett	g	7	11	61
Stärke	g	448	378	63
Zucker	g	41	29	63
Energiewerte				
Umsetzb. Energie	MJ ME	13,39	12,29	13,86
Aminosäuren				
Lysin	g	14,8	14,4	16,0
Methionin	g	1,9	1,9	2,3
Threonin	g	7,5	8,7	11,7
Tryptophan	g	1,6	1,6	2,2
Mineralstoffe				
Kalzium	g	1,0	1,8	3,2
Phosphor	g	3,9	5,0	5,0

Bayerische Landesanstalt fü Landwirtschaf

Institut für Tierernährung und Futterwirtschaft

März 2017

Ackerbohnen, Erbsen oder Lupinen im Futter für Aufzuchtferkel, Auswirkungen auf Futteraufnahme und Leistung

(Schweinefütterungsversuch S 93)

Wolfgang Preißinger, Günther Propstmeier, Simone Scherb

1 Einleitung

Landwirten und somit auch sehweinehaltenden Betrieben werden Fördergelder für konkrete Umweltleistungen ("Greening") gewährt. Dabei wird u.a. auch das Vorweisen von ökologischen Vorrangflächen gefordert. Diese Vorrangflächen können durch den Anbau von Körnerleguminosen wie z.B. Erbsen, Ackerbohnen oder Lupinen realisiert werden. Diese Variante ist vor allem für Veredelungsbetriebe interessant

Erbsen, Ackerbohnen, Süßlupinen (blaublühend)

Ferkelversuch aus Bayern

Ferkelversuch – Rationszusammensetzung (%)

		Soja	Soja HP		Erbsen		Ackerbohnen		inen
		FAF I	FAF II						
Weizen	%	36,5	38	33	32,5	33	32,5	33	32,5
Gerste	%	40	40	40	40	40	40	40	40
Futteröl	%	1	1	1	1	1	1	1	1
Sojaschrot 48	%	17,5	16,5	15	12	15	12	15	12
Erbsen	%			6	10	-			
Ackerbohnen	%					6	10		
Lupinen	%					-		6	10
Mifu Standard	%	¹ 4,0	¹ 3,5					¹ 4,0	¹ 3,5
Mifu Sonderm.	%			² 4,0	² 3,5	² 4,0	² 3,5		
Fumarsäure	%	1	1	1	1	1	1	1	1
ME	MJ	13,16	13,21	13,14	13,16	13,08	13,07	13,17	13,22
Rp	g	173	169	170	162	173	168	177	175
Lys	g	12,0	11,2	12,0	11,2	12,1	11,3	12,1	11,3
M+C	g	6,5	6,3	6,7	6,3	6,7	6,3	6,4	6,2
dvd Lys		11,0	10,2	10,9	10,0	11,0	10,2	11,0	10,3
dvd M+C		5,6	5,4	5,8	5,4	5,8	5,4	5,6	5,3

¹10% Lysin; **2,5%** Methionin; **3,5%** Threonin; 0,7% Tryptophan; 0,7% Valin

²10% Lysin; **3,5%** Methionin; **4,0%** Threonin; 0,7% Tryptophan; 0,7% Valin

Leistungsdaten aus dem Versuch

	SBM	Erbsen	Ackerbohnen	Lupinen	p-Wert
Lebendmasse, kg					
Aufstallung	8.7	8.7	8.7	8.7	0.995
Versuchsstart	9.4	9.5	9.2	9.6	0.720
Futterwechsel	17.3	17.7	17.3	17.2	0.902
Endgewicht	28.8	28.3	29.5	28.7	0.747
Tägliche Zunahmen, g					
Phase 1	375	393	385	364	0.771
Phase 2	575	528	609	573	0.052
Gesamt	473	459	494	466	0.445
Futterverbrauch, g/Tag					
Phase 1	519	487	528	504	0.713
Phase 2	883	813	893	872	0.209
Gesamt	696	646	706	684	0.337
Futteraufwand, kg/kg					
Phase 1	1.41 ^a	1.24 ^b	1.40 ^a	1.39 ^a	0.035
Phase 2	1.54	1.55	1.47	1.54	0.255
Gesamt	1.47	1.41	1.43	1.47	0.133

Einsatz von gesteigerten Anteilen an Erbsen als Ersatz von Sojaextraktionsschrot

		Anfang	smast			Mittel	mast			Endn	nast	
	Kontrolle	VG 1	VG 2	VG 3	Kontrolle	VG 1	VG 2	VG 3	Kontrolle	VG 1	VG 2	VG 3
Sojaextraktionsschrot, hp, %	15.2	12.2	12.2		9.2	5.3	3.5		1.0			
Rapsextraktionsschrot, %	5.9	5.9	5.9	11.3	10.8	10.8	10.8	8.8	15.0	7.0	2.0	
Erbsen, %		10.0	10.0	20.0		15.0	20.0	20.0		20.0	30.0	20.3
Ackerbohnen, %				10.0				10.0				10.0
Energie, MJ ME/kg	13.8	13.4	13.6	13.5	13.3	13.1	13.2	13.5	13	13.2	13.1	13.1
Rohprotein, g/kg	17.2	17.6	17.5	17.3	16.4	15.3	15.7	15.8	14.4	14.0	13.3	14.2
Lysin, g/kg	10.2	10.2	10.3	10.1	10	9.4	9.9	9.9	8.1	7.8	7.6	8.6

Kein Unterschied in den Tageszunahmen, Futterverbrauch und Magerfleischanteil.

Signifikante Verbesserung des Futteraufwandes durch den Einsatz von Erbsen.

¹Erbsen: Protein – hef_{medium}: 80%

Eiweißfuttermittel - Körnerleguminosen

Neben der bestmöglichen Einschätzung der "nutritiven" Bestandteile…

Antinutritive Faktoren in großkörnigen Körnerleguminosen

Gruppe	Stoff	Wirkung	Vorkommen
Phenole	Tannine	Futterverzehr ↓	Ackerbohne, Erbse
Proteine	Lectine Proteaseinhibitoren	Proteinverdauung ↓	Ackerbohne, Erbse
Glucoside	Vicin, Convicin a-Galactoside	Fettstoffwechsel ↓ Blähungen	Ackerbohne, Erbse, Lupine
Alkaloide	div. Stoffe	Futterverzehr ↓ Leber	Lupine
Chelatoren	Phytat	P-, Ca-, Zn- Verwertung ↓	alle Leguminosen

Standardisierte praecaecale Verdaulichkeiten von Rohprotein und Aminosäuren

Geringere Verdaulichkeit der Aminosäuren von Eiweißalternativen

pcv, %	ХP	Lys	Met	Cys	Thr	Trp	Val	lle	Leu	Phe	Arg	His
<u>Eiweißfutter</u>												
SES, 44% XP	82	87	88	79	86	86	82	86	85	86	91	87
Ackerbohnen	77	82	61	68	75	71	72	77	79	74	89	83
Erbsen	79	84	73	66	75	70	78	79	80	76	89	81
Lupinen	85	84	81	91	83	85	75	84	82	71	92	82
Sojabohnen	76	80	78	75	74	76	74	76	76	77	85	80

Gezielte Sortenauswahl **Alkaloide = "Bitterstoffe"**"Süßlupinen" < 0,05 % Alkaloide im Korn

Trypsininhibitoren = Reduzieren AS-Verdaulichkeit Züchterisch TIA – reduzierte Sojabohnensorten

Ackerbohnen

Ackerbohnen mit weniger Vicin/Convicin sind **für Legehennen gut geeignet**

Ackerbohnen stellen ein interessantes Proteinfuttermittel für Nutztiere dar. Der Forschungsverbund "Abo-Vici" hat Ackerbohnen aus vielseitigen Blickwinkeln untersucht, um Möglichkeiten des Einsatzes dieser Kultur für Legehennen-Futter besser zu verstehen. Dr. Wolfgang Siegert von der Universität Hohenheim stellt die Kernergebnisse zweier Projektpartner hier dar.

Sojabohne und ANF

Trypsininhibitor (TIA) reduziert deutlich die Protein- bzw. Aminosäurenverdaulichkeit → Leistung ↓

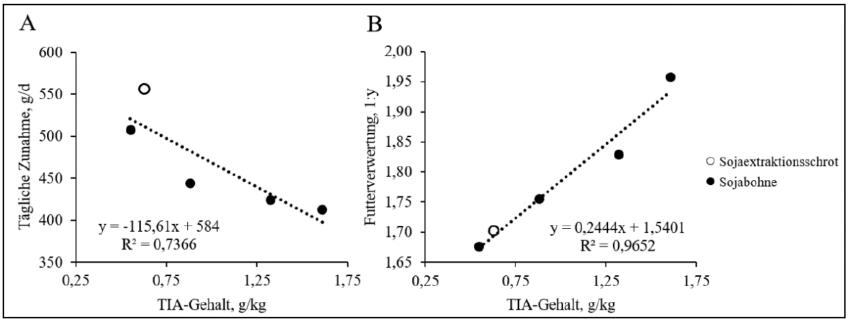


Abbildung 1: Korrelation zwischen TIA-Gehalt im Alleinfutter und der täglichen Zunahme (A) bzw. der Futterverwertung (B) basierend auf den Fütterungsgruppen

+ 1 g TIA pro kg
Alleinfuttermittel
→ eine
Verschlechterung des
Futteraufwandes um
0,24 kg/kg (R² = 0,97)

TIA und Ureaseaktivität korrelieren nicht

Auswirkungen in der Rationsgestaltung

Bezeichnung	Anteil
Gerste, 2-zeilig, %	36
Weizen, %	34
Sojakuchen, 8% Rohfett, %	22
Kartoffeleiweiß, %	5
Invaso Pro natur (bio), %	3
Summe	100

Brutto: 23.82 g Verdaulich: 16,69 g Verdaulichkeit: 83 %

-10 % = 75 % Verdaulichkeit

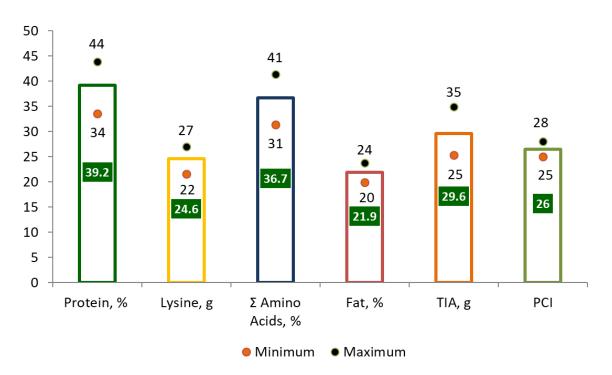
- 20 % = 66 % Verdaulichkeit

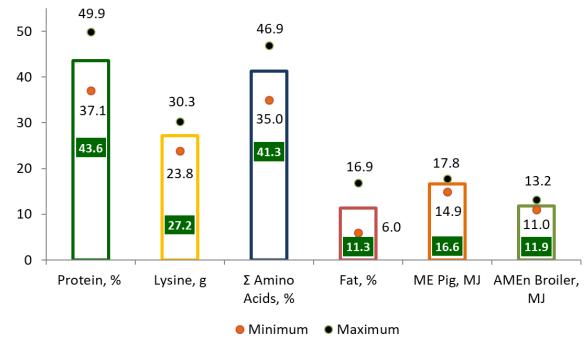
Lysinverdaulichkeit: 83 %

Lysinverdaulichkeit: **75** %

Inhaltsstoff	Geha
z, om ver adamentere	
Lysinverdaulichkeit:	66 %

Inhaltsstoff	Gehalt
Frischmasse, g	993
Umsb, Energie, MJ ME	13.06
Rohprotein, g	209
Lysin, g	10.7
pcv Lysin, g	8.80
Lysin/MJ ME Schwein	0.82
pcv Lysin / MJ ME Schwein	0.67

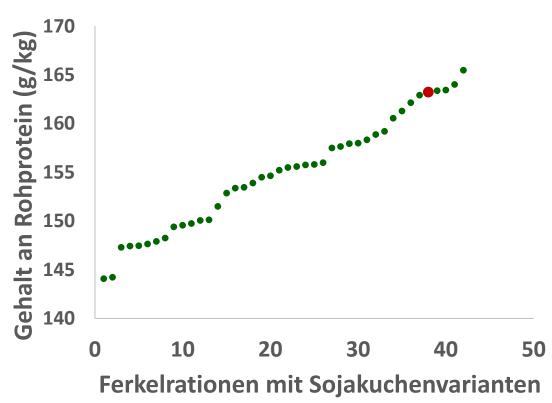

Inhaltsstoff	Gehalt
Frischmasse, g	993
Umsb, Energie, MJ ME	13.06
Rohprotein, g	209
Lysin, g	10.7
pcv Lysin, g	8.37
Lysin/MJ ME Schwein	0.82
pcv Lysin / MJ ME Schwein	0.64

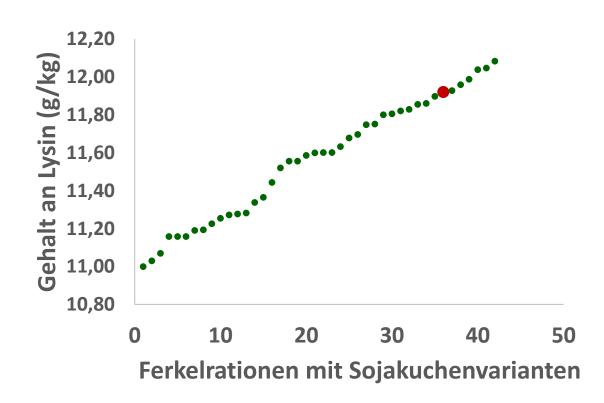

Inhaltsstoff	Gehalt
Frischmasse, g	993
Umsb, Energie, MJ ME	13.06
Rohprotein, g	209
Lysin, g	10.7
pcv Lysin, g	7.94
Lysin/MJ ME Schwein	0.82
pcv Lysin / MJ ME Schwein	0.61

Variabilität von Sojakuchen – 33 Betriebe - europaweit

Unverarbeitete vollfette Sojabohnen

Verarbeitete Sojabohne – Kuchen

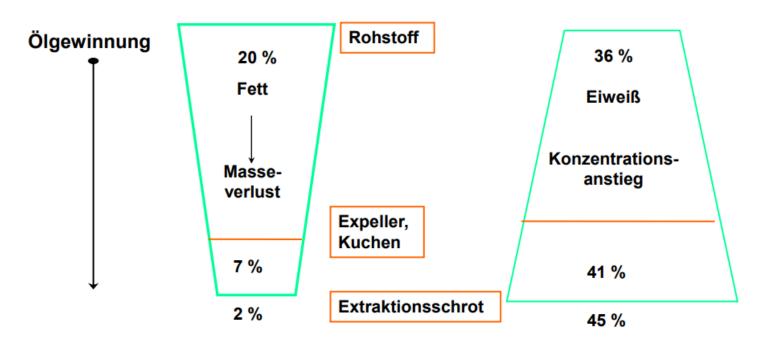



Mit welchen Werten rechnen Sie die Ration?

"Bedarfsgerecht" kalkuliert?

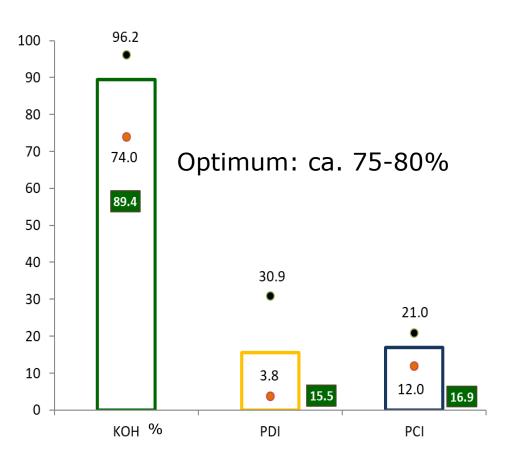
Auswirkungen der nährstofflichen Variabilität in der Rationsgestaltung

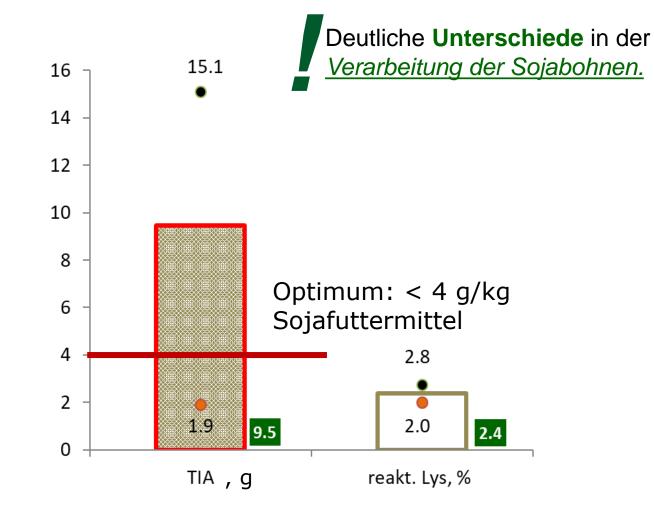
	Anteil, %
Körnermais	45,0
Wintergerste	28,2
Sojabohnenschale	5,1
Sojakuchen	17,0
Futtersäure	0,2
Premix	4,5



Einfluss der Entölung auf den Gehalt an Rohprotein, etc.

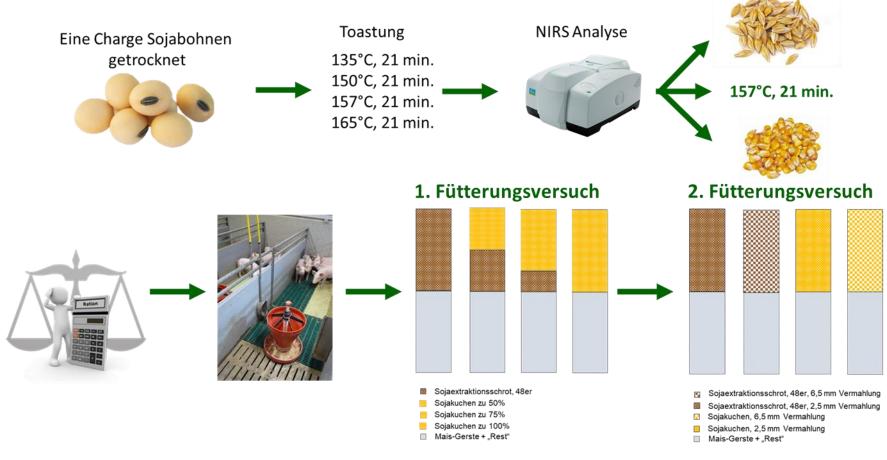
1. Rohproteingehalt der unbehandelten Sojabohne determiniert den Gehalt an Rohprotein des Sojakuchens


- 2. Je höher der Gehalt an Restöl:
- desto geringer der Gehalt an Rohprotein
- desto höher der Gehalt an Energie

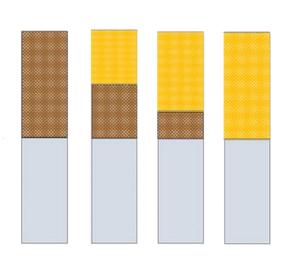

Lysin: ME - Verhältnis

Verarbeitungsqualität – 33 Betriebe

Prozessqualität – Kuchen



Precision feeding - Ferkelversuch

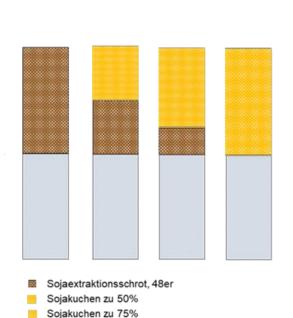

Toast- und Fütterungsversuch – Sojakuchen vs. Sojaextraktionsschrot

Schrot raus Kuchen rein

Kalkulierte Rationszusammensetzung

Sojaextraktionsschrot, 48er
Sojakuchen zu 50%
Sojakuchen zu 75%
Sojakuchen zu 100%
Mais-Gerste + "Rest"

	Versuchsgruppen			
Inhaltsstoffe kalkuliert, g/kg FM	SES	50%	75%	100%
Trockenmasse	889,5	895,4	898,5	901,1
Umsetzb. Energie, MJ ME	13,19	13,28	13,33	13,36
Rohprotein	171,3	173,1	173,7	174,3
Lysin	12,6	12,7	12,8	12,8
MJ ME : Lysin – Verhältnis	0,955	0,957	0,959	0,957


Versuchsgruppen

Inhaltsstoffe analysiert, g/kg				
FM	SES	50%	75%	100%
Trockenmasse	889	889	892	893
Rohprotein	170	171	170	170
Umsetzb. Energie, MJ ME	13,31	13,44	13,55	13,55
Lysin	12,23	12,45	12,39	12,42
MJ ME : Lysin – Verhältnis	0,918	0,926	0,914	0,917

Schrot raus Kuchen rein

Leistungsdaten aus dem Fütterungsversuch

Versuchsgruppen						
	SES	50%	75%	100%	SEM	p-
						Wert
Anfangsgewicht, kg	9,50	9,53	9,15	9,52	1,13	0,5872
Endgewicht, kg	35,52	35,96	35,96	35,33	3,00	0,9238
Tgz 1. bis 3. Woche, g/T Tgz 4. bis 6. Woche, g/T Tgz 1. bis 6. Woche, g/T	482,3 752,0 619,5	482,3 776,2 629,3	483,0 793,9 638,2	487.0 746,0 614,7	9,13 10,8 8,00	0,9981 0,3908 0,7581
FA 1. bis 3. Woche, g/T FA 4. bis 6. Woche, g/T FA 1. Bis 6. Woche, g/T	811,4 1391,5 1101,4	780,2 1394,4 1087,3	766,4 1355,1 1060,7	802,9 1401,0 1102,4	7,81 13,7 9,40	0,1077 0,7372 0,4384
FV 1. bis 3. Woche, 1: FV 4. bis 6. Woche, 1: FV 1. bis 6. Woche, 1:	1,63 1,80 1,74	1,67 1,81 1,76	1,70 1,77 1,74	1,63 1,86 1,77	0,06 0,04 0,01	0,7667 0,1118 0,8192

Tgz, Tageszunahme; FA, Futteraufnahme; FV, Futterverwertung, SEM, Standardfehler, p-Wert < 0,05 Signifikanz-niveau;

Sojakuchen zu 100% Mais-Gerste + "Rest"

"Leguminosen" als wertvolle Eiweißfuttermittel in der Ökofütterung

Trifolium pratense (http://www.bsz-agrar-dd.de)

Gelbklee Medicago lupulina (http://www.bsz-agrar-dd.de)

Weißklee
Trifolium repens

(http://www.bsz-agrar-dd.de)

Schwedenklee

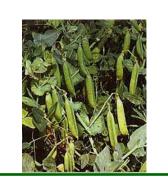
Trifolium hybridum (http://www.bsz-agrar-dd.de)

Hornklee

Lotus cornicultus (http://www.bsz-agrar-dd.de)

Esparsette

Onobrychis viciaefolia (http://www.bsz-agrar-dd.de)


Ackerbohne

Vicia faba (http://www.bsz-agrar-dd.de)

Erbsen(kraut)

Pisum sativum STOCK und DIEPENBROCK 1999)

Saatwicke

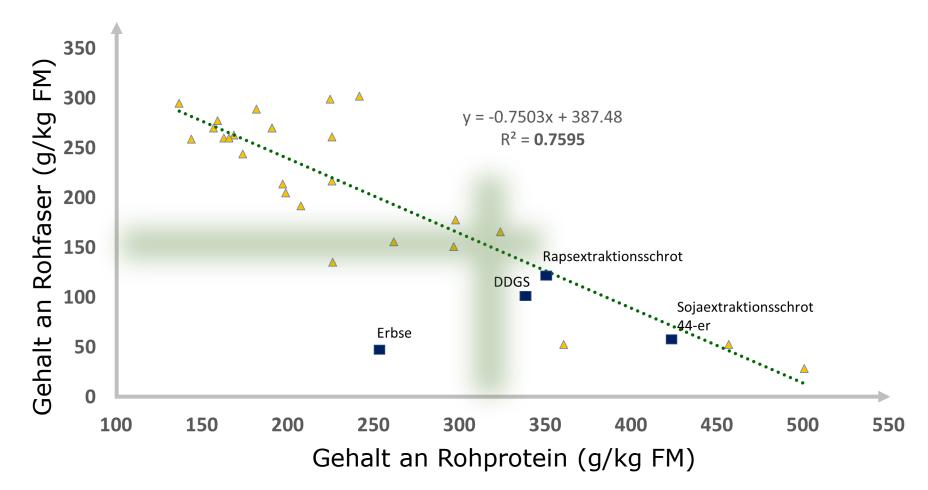
Vicia sativa (http://www.bsz-agrar-dd.de)

Luzerne

Medicago sativa (http://www.bsz-agrar-dd.de)

Lupinen

Lupinus angustifolus (http://www.bsz-agrar-dd.de)


Sojabohne

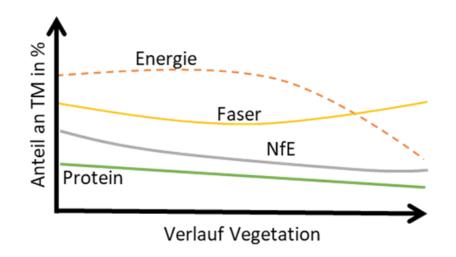
Glycine max (http://www.lfl.bayern.de)

Ein Zusammenspiel von Rohfaser und Rohprotein bzw. Aminosäuren

Inhaltsstoffe von unterschiedlichen Luzerneprodukten

Merkmal		Luzerne- blätter	Luzerne- grünmehl	Luzerne- silage
Rohasche	g	119	106	110
Rohfaser	g	163	299	296
Rohfett	g	49	33	34
Zucker	g	56	53	10
Rohprotein	g	325	243	226
Lysin	g	18,5	13,1	13,2
Methionin	а	5.4	3,7	3,4
Cystin	g	4,1	2,5	1,1
Met.+Cys	g	9,6	6,2	4,5
Threonin	g	12,5	8,6	7,8
Tryptophan	g	5,8	3,2	3,1

Grassilage im Aussenbereich



Grobfutter im Frischzustand

Naturland

Schnittzeitpunkt beachten Saponine als ANF?

Auswirkungen auf die Kotbeschaffenheit

Mit Wasser gespülter Kot von Sauen nach Vorlage von Maissilage während der Trächtigkeit

Preißinger

Weitere Auswirkungen ...

Weitere Auswirkungen ...

"Klassische Schweinemastration"

	AM	MM	EM			
Weizen, %	47	46	50			
Körnermais, %	34	40	41			
Sojaextraktionsschrot – Ip, %	16	11	6			
Mineralfutter (14% Lysin), %	3	3	3			
Umsb, Energie, MJ ME	13,4	13,5	13,5			
Rohprotein, g	162	145	129			
Lysin, g	10,9	9,7	8,5			
dvd Lysin, g	9,7	8,6	7,6			
Rohfaser, g	30	28	26			
Phosphor, g	3,9	3,7	3,3			
Mineralfutter: AM 1 % P, Mittel- und Endmast 0 % P						

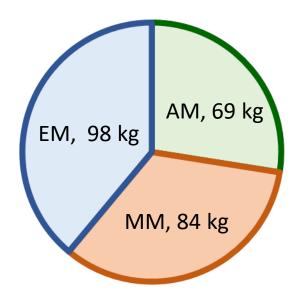
Mittlerer Gehalt an Rohprotein, g 144

Sehr stark N-/P-reduziert Mittlerer Gehalt an Phosphor, g 3,6

Einzelfuttermittel im Vergleich

	Körnermais	Gerste	Weizen	Weizenkleie	Sojaschrot-lp
Rohfaser, g	23	44	26	100	60
Energie, MJ ME	14,16	12,61	13,68	8,64	13,07
Rohprotein, g	90	110	121	160	440
verd. Rohprotein, g	71	79	102	104	374
Lysin, g	2,46	3,92	3,39	6,42	26,93
verd. Lysin, g	1,94	2,51	2,40	4,56	23,43
Lysin / 100 g RP	2,75	3,57	2,79	4,01	6,12
Phosphor, g	3,1	3,5	3,3	11,4	6,2

Angaben in 88% Trockenmasse



Weizenkleie ist mehr als ein "Faserlieferant"

	AM	MM	EM
Körnermais, %	43	39	42
Weizen, %	32	36	37
Sojaextraktionsschrot – Ip, %	17	10	5
Weizenkleie, %	5	11	13
Mineralfutter (12% Lysin), %	3	3	3
Umsb, Energie, MJ ME	13,2	12,9	12,9
Rohprotein, g	165	148	130
Lysin, g	10,6	9,3	8,1
dvd Lysin, g	9,4	8,2	7,05
Rohfaser, g	33	36	35
Phosphor, g	4,3	4,3	4,3
Mineralfutter: AM 1 % P, Mittel- und Endma	ast 0 % P		
Mittlerer Gehalt an Rohprotein, g		146	
Mittlerer Gehalt an Phosphor, g		4,3	

→ Sehr stark N-/P-reduziert: 144 g Rohprotein, 4,1 g Phosphor

Futtermenge, kg/MS

Weizenkleie, kg/MS
3,4
9,2
12,7
Summe: 25,4

dvd, dünndarmverdaulich, alle Angaben pro kg Trockenfutter (TF, 88% Trockenmasse)

Unterschied zwischen den beiden Rationsgestaltungen

	Futtermengen / Differ		Differenz,
	Schwein, kg		kg
Körnermais	104	97	+7
Weizen	88	120	-31
Sojaextraktionsschrot-lp	25	26	-1
Weizenkleie	25	0	+25
Mineralfutter (12% bzw. 14% Lysin)	8	8	+-

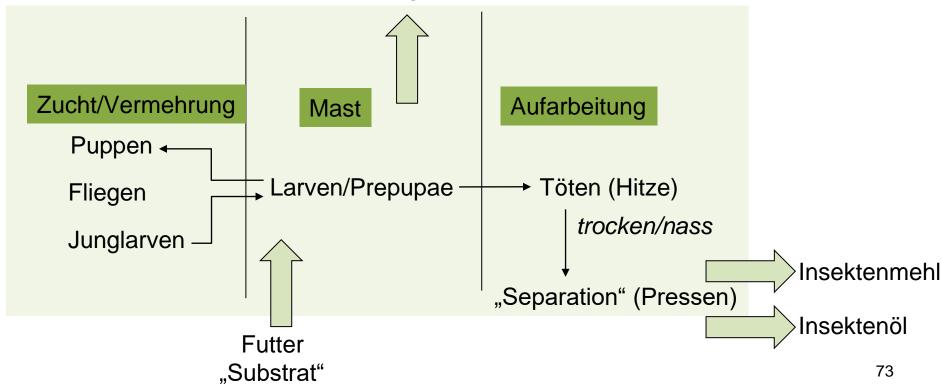
Ökonomie, Ökologie, Tiergesundheit, Wohlbefinden, CO₂-Fußabdruck, Nahrungsmittelkonkurrenz ("Emotionen über Fakten", …

Einsatz von Weizenkleie in stark N-reduzierten Schweinemastrationen

60 Mastschweine Pi x (DE x DL) auf vier Versuchsgruppen aufgeteilt ...

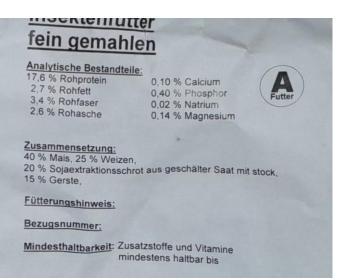
	Anfangsmast (38-55 kg)			ittelma 5-88 k					indmas 3-115 l		
Versuchsgruppe	1-5	1	2	3	4	5	1	2	3	4	5
Sojaschrot, hp, %	17,1	11,6	8,4	5,3	3,7	5,3	5,8	3,0	0,6	-	-
Weizenkleie, %	4,0	4,0	7,7	10,0	15,3	10,0	8,0	10,0	10,0	15,2	15,2
Energie, MJ ME, kg	13,7	13,6	13,6	13,4	13,4	13,6	13,4	13,4	13,4	13,5	13,5
Rohprotein, g/kg	167	146	140	131	129	131	134	124	111	114	114
Rohfaser, g/kg	26,6	29,1	29,3	34,5	33,7	31,3	33,8	31,9	32,1	32,2	33,4
Lysin, g/kg	10,7	9,2	9,1	9,0	9,1	9,1	8,8	8,6	7,9	8,3	8,3
dvd. Lysin, g/kg	9,7	8,3	8,3	8,3	8,5	8,4	8,07	7,88	7,24	7,61	7,61
Lysin: MJ ME	0,78	0,69	0,67	0,67	0,69	0,67	0,66	0,65	0,59	0,63	0,63

Ergebnisse aus der Mast- und Schlachtleistung


	VG 1	VG 2	VG 3	VG 4	VG 5
Mastleistung					
Einstallgewicht, kg	38,8	39,7	38,3	38,3	38,9
Ausstallgewicht, kg	114,8	114,5	113,2	114,1	114,0
Zunahmen Gesamt, g/T	924	876	821	845	857
Futterverbrauch Gesamt, kg/T	2,90a	2,55 ^b	2,20 ^c	2,51 ^b	2,34 ^{bc}
Futteraufwand Gesamt, kg/kg	3,03a	2,84 ^{ab}	2,61 ^b	2,87a	2,63 ^b
Schlachtleistung					
Schlachtgewicht, kg	91,8	92,5	91,4	91,6	91,4
Ausschlachtung, %	80,0	80,8	80,7	80,3	80,2
MFA, %	61,0	62,3	62,3	62,1	61,2

Zielkonflikt: Hoher P-Gehalt der Rationen – rechtlich

Vom Ei zum Larvenprotein


Fraß (§ = Dünger)
Gasförmige Emissionen (BlmSchG)

FARMINSECT

Analysenergebnisse, Angaben in 88% TS

	Larve	Alleinfuttermittel	Fraß
Trockenmasse, g	225	890	524
Rohasche, g	108	65	133
Rohprotein, g	496	143	127
Rohfaser, g (Chitin)	88	83	170
Rohfett, g/kg	149	28	21
Kalzium, g/kg	16	5,9	9,6
Phosphor, g	17,8	11,6	22,3
Kupfer, mg	76,2	20,6	251,6
Zink, mg	378,5	95,6	206,3
Mangan, mg	466,3	87,8	151,5
Lysin, g	28,87	6,04	n.u.
Methionin, g	8,25	1,88	n.u.
Cystin, g	4,29	2,26	n.u.
Threonin, g	18,29	4,13	n.u.
Tryptophan, g	11,58	2,21	n.u.

Vergleich mit weiteren ausgewählten Eiweißfuttermitteln

Inhaltsstoff	SES, 44%	Fischmehl, 60-65% RP	Süßlupine	Larve Farminsect
Rohasche, g	59	190	36	108
Rohprotein, g	440	595	331	496
Lysin, g	26,93	41,54	15,94	28,87
Methionin, g	5,94	15,36	2,05	8,25
Threonin, g	17,2	23,4	11,35	18,29
Tryptophan, g	5,94	5,9	2,65	11,58
Rohfett, g	12	60	77	149
Rohfaser, g	60	9	120	88
Kalzium, g	2,7	41,8	2,6	16
Phosphor, g	6,2	24,8	4,5	17,8
Eisen, mg	140,8	864,2	66	370,7
Kupfer, mg	16,8	6,6	7	76,2
Zink, mg	61,6	81,8	51,6	378,5
Mangan, mg	29	15	44	466,3
Selen, mg	0,22	1,41	0,09	n.u.

Bezogen auf 88 % TS, SES, Sojaextraktionsschrot – 440 g Rohprotein

Ration zur Larvenmast – Trog vs. Trog?

Rationsanteil, % / kg FM

	Tractionisatitesti, 70 / 10 1 111	
Weizenkleie	20	
Getreide-Vormischung	4	
Futtersäure	1	
Wasser	75	_
Trockenmasse, g	880	
Energie, MJ ME	9,77	
Rohprotein, g	157	
Rohfaser, g	86	
Lysin, g	6,45	
dvd Lysin, g	4,72	
Phosphor, g	9,9	

	Anteil, % / kg FM
Gerste	15
Sojaextraktionsschrot-hp	20
Weizen	25
Körnermais	40

Nur zugelassene Futtermittel

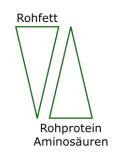
sind als Substrat erlaubt

Nicht erlaubt

separierte Gärreste separierte Gülle Abfälle, etc...

Lysin/Met + Cys/Threonin/Tryptophan: 1:0,84:0,79:0,37

Lysin/MJ ME Schwein: 0,66


Ca/P?

Nährstoffliche Charakterisierung der Larven-Produkte

Inhaltsstoffe	BSFp meal	BSFh meal
Trockenmasse	1000	1000
Organische		
Masse	956	921
Rohprotein	587	665
Rohfett	191	47
Bruttoenergie	25,7	21,5
Essentielle Amir	nosäuren	
Lysin	21,0	25,2
Methionin	6,46	8,56
Threonin	17,2	21,8
Arginin	21,5	27,0
Valin	27,2	34,5

	Rohprotein, %	Rohfett, %	Lysin, %
Barroso et al. (2014)	36,2	18,0	2,75
De Marco et al. (2015)	36,9	34,3	2,23
Spranghers et al. (2017)	39,9	21,8	2,34
Barroso et al. (2014)	40,7	15,6	2,90
Spranghers et al. (2017)	43,1	38,6	2,57
St-Hilaire et al. (2007)	43,6	33,1	2,62
Cullere et al. (2016)	54,8	15,6	2,10
De Marco et al. (2015)	55,3	18,0	2,10
Mwaniki et al. (2018)	57,5	7,0	3,30
Marono et al. (2017)	62,5	4,7	4,14
De Marco et al. (2015)	65,5	4,6	2,50
Mittelwert	48,7	19,2	2,7
Standardabweichung	10,6	11,9	0,6

Hartinger et al. (2022): Effect of *Hermetia illucens* protein meal and fat on zootechnical performance of broilers. GfE, 2022

Verarbeitete tierische Proteine (VTP), processed animal proteins (PAP)

- seit September 2021 (wieder) in der EU zugelassen
- "Kannibalismusverbot", VTP in der Schweinefütterung nur vom Geflügel möglich
- Keine VTP vom Rind (BSE)
- Mischfutterindustrie: eher verhalten (Verfügbarkeit, Rückstandsproblematik, Nachverfolgbarkeit, getrennte Produktionsschienen, Logistik, Einsatz Heimtierfutter, Preis etc.)
- Wenige Hersteller/Verarbeitungsbetriebe für VTP
- VTP beim Schwein meist im Ergänzungsfutter für Ferkel
- Einsatz eher bei jüngeren Tieren (Proteinqualität, Aminosäuren)
- Versuche mit Ferkeln und Verdauungsversuche ab 2023 in Schwarzenau und Haus Düsse

Verarbeitete tierische Proteine (VTP), processed animal proteins (PAP)

Produktbeispiel eines "Geflügel Fleisch- und Knochenmehls" - Nährstoffgehalte

		Fleisch-Knochenmehl Geflügel	Sojaextr. Schrot, Schwarzenau, 2022
TM	g/kg	> 920	880
Rohprotein	g/kg	> 550	422
Rohfett	g/kg	< 120	20
Rohasche	g/kg	< 300	62
Kalzium	g/kg	96	3,6
Phosphor	g/kg	44	7,5
Magnesium	g/kg	22	3,3
Lysin	g/kg	26	25,9
Methionin	g/kg	10	5,7
Threonin	g/kg	17	16,3
Isoleucin	g/kg	17	

Verarbeitete tierische Proteine (VTP), processed animal proteins (PAP)

Einsatz im Ergänzer mit 7 % Einsatzrate

Zusammensetzung: Verarbeitetes tierisches Protein (Geflügel): Calciumcarbonat; Natriumchlorid; Gerste (druckhydrothermisch behandelt und aufgeschlossen); Magnesiumoxid; Weizen (druckhydrothermisch behandelt und aufgeschlossen); Mais (druckhydrothermisch behandelt und aufgeschlossen); Magnesiumfumarat; Glycerin.

Fütterungshinweis: Dieses Ergänzungsfuttermittel darf wegen gegenüber Alleinfuttermitteln höheren Gehalten an Vitamin A, Vitamin D3, Spurenelementen, Enzymen und sensorischen Zusatzstoffen nur an Ferkel bis 8 Wochen nach dem Absetzen mit 7.0 % der Tagesration verfüttert werden.

ENTHÄLT VERARBEITETES TIERISCHES PROTEIN VON GEFLÜGEL - DARF NICHT AN NUTZTIERE AUSGENOMMEN TIERE IN AQUAKULTUR, PELZTIERE SCHWEINE VERFÜTTERT WERDEN. Die gleichzeitige Verwendung mit Trinkwasser, dem Cholinchlorid zugesetzt wurde, sollte vermieden werden. Zur Verwendung für abgesetzte Ferkel bis 35 kg.

Einsatz als Ergänzer mit 50 % Einsatzrate

Zusammensetzung: Sojaproteinkonzentrat; Erzeugnisse und Nebenerzeugnisse aus der Back- und Müsliindustrie; Gerste (druckhydrothermisch behandelt und aufgeschlossen); Verarbeitetes tierisches Protein (Geflügel); Süßmolkenpulver; Weizen (druckhydrothermisch behandelt und aufgeschlossen); Sojabohnenschalen (druckhydrothermisch behandelt und aufgeschlossen); Erzeugnisse und Nebenerzeugnisse aus der Süßwarenindustrie; Mais (druckhydrothermisch behandelt und aufgeschlossen); Traubenzucker; Saccharose; Natriumchlorid; Pflanzenfett (Kokos, Palm); Weizengrießkleie; Apfeltrester, getrocknet, entpektinisiert; Calciumcarbonat; Glycerin; Sojaöl; Rohproteinreiches Nebenerzeugnis aus der Feststofffermentation mit Pilzen.

Fütterungshinweis: Dieses Ergänzungsfutter darf wegen gegenüber Alleinfuttern höheren Gehalten an Vit. A, Vit.D3, Spurenel., zootechn., sensor. und technolog. Zusatzstoffen nur an Ferkel bis 4 Wo. nach dem Absetzen mit 50 v. H. der Tagesration verfüttert werden.

ENTHÄLT VERARBEITETES TIERISCHES PROTEIN VON GEFLÜGEL - DARF NICHT AN NUTZTIERE AUSGENOMMEN TIERE IN AQUAKULTUR, PELZTIERE SCHWEINE VERFÜTTERT WERDEN. Die gleichzeitige Verwendung mit Trinkwasser, dem Cholinchlorid zugesetzt wurde, sollte vermieden werden. Zur Verwendung für abgesetzte Ferkel bis 35 kg.

Fazit und Ausblick

- "Nichts ist so beständig wie der Wandel" gilt auch für die Tierernährung
- Reduzieren heißt Präzisieren!
- Auch ohne Sojaextraktionsschrot sind sehr gute Leistungen erzielbar.
- Hohe Variabilität im Nährstoffgehalt von Futtermittel und deren Verarbeitungsqualität müssen in der Rationsgestaltung Berücksichtigung finden.
- Nebenprodukte (z.B. Weizenkleie) → Vorteil: Teller vs. Trog (Deklaration)
- Kleinkörnige Leguminosen (z.B. Luzerne) Mechanisierbarkeit?
- Larvenprotein und PAP werden eine Nische bleiben Preiswürdigkeit

Grundregeln der Tierernährung müssen eingehalten werden

- → Idealprotein
- → Lysin : ME Verhältnis
- → praecaecale Verdaulichkeit der AS

"Was man nicht misst, kann man nicht steuern".

